Technical Session
Managing Challenging Asset & Marginal Field: Malikai Project - Thriving in a Lower for Longer World

Edmund Adrian, Adeline Loo
Sabah Shell Petroleum Co.
Malikai Project:
Thriving in a Lower for Longer World
Introduction to Malikai Tension Leg Platform (TLP)

WHAT IS A TENSION-LEG PLATFORM?

- **500 METRES DEPTH**
- **Topsides**
- **Hull**
- **Tendons**
- **Top-tension risers**
- **Subsea wellheads**
- **Foundation**

KEY FACTS

- **100KM OFFSHORE SABAH, MALAYSIA**
- **TOTAL WEIGHT 27,500 Tonnes**
- Roughly weighs the same as 27,000 average family cars.
- **UP TO 90 CREW MEMBERS WILL LIVE ON THE PLATFORM AND WORK**

It is a vertically floating structure moored by groups of tenders (tendons) at each corner. The groups of tendons are held upright in tension, giving the platform its name.

Special kind of pipe used for both drilling and production supported by tension from the top.
Evolution of the Concept

Wet Tree vs Dry Tree

- Full Production TLP + Permanent Drilling Module + Export to shore
- Satellite to KBB (Shared Processing)
- ‘Hybrid’ TLP (Limited Facility + Tender Assisted Drilling)
- Major Maintenance Philosophy (LQ vs Campaign based)
- New Technology: Single Combo Top Tension Riser (SC-TTR)
- Passive Hull & Marine System
- Reduced well count

FASTER CHEAPER FIT-FOR-PURPOSE
Overall Design

Passive Hull & Marine System
All traditional TLPs have active hull design; for Malikai, a passive hull design was used to minimize risks associated with hull entry.

Single Casing Top Tensioned Risers
Reduction of 3 steps, Reduce costs

Topsides
- Normal POB capacity 65, max 90
- Production/Test Separator – 2
- Two-Stage Gas Compressor – 2 Trains x 2x50%
- Separate Oil & Water metering
- Crude Oil transfer pumps – 2x100%
- Liquid Pig Launcher
- Gas Pig Launcher/Receiver

Export Pipelines
- 1 Gas & 1 Liquid flowline to KBB Platform
- KPOC, 1 Crossing @ Kinarat

Tender Assisted Drilling
Reduced TLP Topsides weight by relocating drilling package DES to TAD
Front End Design

- Carried out Basic Engineering Studies to develop Functional Specifications and Design Philosophy Documents
- Emphasized optimization/value engineering
- Early engagement with manufacturer/vendors for key equipment selection and weight/footprint
- Development of detailed information for input to tender documents (Scope of Work, Functional Specifications, etc.)
- Development of responsibility matrix for the various contracts to provide clarity of interfaces - led to clear and well defined contractual arrangements
Tendering Strategy

• FEED Design Competition leading to award of TLP EPC Contract

• 1st tender unfortunately aborted; but team used the various learnings from the exercise to improve the second tender (better defined scope of work)

• Second tender was open to international players

• Pricing structure – overall lump sum, with reimbursable elements (12 key packages identified as critical); unit rate for variations and provisional sum elements
Post Award / Execution Phase

- Established 5 focus areas in the pursuit to meet Goal Zero (no harm, no leaks):
 1. Leadership
 2. Communication
 3. Planning
 4. Quality
 5. Care for people

- Integrated Project Leadership Team; effective collaboration

- Maximized standardization and replication, e.g. reuse of installation aids used by Mars-B TLP project, reuse of contractors / vendors (framework agreement)

- Vigorous Management of Change process; every change subjected to 2-tier MoC challenge process

- Disciplined post contract management, minimized variations

- Detailed KPI monitoring for progress measurement

- Cost reimbursable packages – strict adherence to tendering process & change management
PRINCIPLE 1
REALISTIC EARLY PROMISES
• Completed full IPA Benchmarking
• Conducted Cost & Schedule Risk Analysis
• Developed Contingency Action Plans

PRINCIPLE 2
STRONG TEAMS DELIVER!
• Integrated Team - Facilities, Wells, Subsurface, all support functions represented
• Project Team Charter
• Team Effectiveness Program

PRINCIPLE 3
COMPLY WITH ORS
• Application of premium project assurance, with agreed Assurance Plan
• Project risks assessed and managed systematically

PRINCIPLE 4
CLEAR, COMPETITIVE & DEFINED SCOPE
• Major contracts competitively tendered and ready for award prior to sanction

PRINCIPLE 5
FREEZE THE SCOPE
• Robust MoC procedure with 2-tier challenge processes

PRINCIPLE 6
BEST PRACTICAL FRONT-END LOADING
• Completed IPA Benchmarking, no major gaps

PRINCIPLE 7
MAXIMISE REPLICATION & STANDARDISATION
• Strong alignment and support from Deepwater Centre of Excellence
• Strong linkage with Mars-B TLP and GK Projects for learnings
• Use of frame agreements & umbrella contracts

PRINCIPLE 8
COMPLY WITH PROJECT STANDARDS & CONTROLS
• Complied with mandatory project controls
• Compliance to DCAF
• Audit & Review Plans in place
Overall Project Performance

- **SAFETY:** Excellent HSSE performance compared to other global megaprojects
- **COST:** Delivered ~18% below promise (~15% lower than benchmark)
- **SCHEDULE:** Delivered on target
- **QUALITY:** Flawless start-up and high uptime

AWARDS & RECOGNITIONS

- 2015 BEST INNOVATIVE PROJECT at 7th ShipTek Maritime Awards
- 2016 TECHNIP CEO HSSE AWARD
- 2016 SHELL CEO HSSE & SP AWARD in HSSE & SP Leadership category
- 2016 GREEN STORY AWARD, REPLICACTION STORY AWARD and INNOVATION STORY AWARD at PETRONAS PAC Success Story Competition 2015/16
- 2017 OUTSTANDING ENGINEERING ACHIEVEMENT AWARD by The Institution of Engineers Malaysia (IEM)
- 2017 ASEAN OUTSTANDING ENGINEERING ACHIEVEMENT AWARD by ASEAN Federation of Engineering Organisations
- 2017 FINALIST for ENGINEERING PROJECT OF THE YEAR for Platts Global Energy Awards
- 2017 RUNNER-UP for EFFICIENT & EFFECTIVE DELIVERY ORGANISATION by P&T Performance Excellence Awards